
Abstract Plant breeders frequently evaluate large

numbers of entries in field trials for selection. Gener-

ally, the tested entries are related by pedigree. The

simplest case is a nested treatment structure, where

entries fall into groups or families such that entries

within groups are more closely related than between

groups. We found that some plant breeders prefer to

plant close relatives next to each other in the field. This

contrasts with common experimental designs such as

the a-design, where entries are fully randomized. A

third design option is to randomize in such a way that

entries of the same group are separated as much as

possible. The present paper compares these design

options by simulation. Another important consider-

ation is the type of model used for analysis. Most of the

common experimental designs were optimized assum-

ing that the model used for analysis has fixed treatment

effects. With many entries that are related by pedigree,

analysis based on a model with random treatment ef-

fects becomes a competitive alternative. In simulations,

we therefore study the properties of best linear unbi-

ased predictions (BLUP) of genetic effects based on a

nested treatment structure under these design options

for a range of genetic parameters. It is concluded that

BLUP provides efficient estimates of genetic effects

and that resolvable incomplete block designs such as

the a-design with restricted or unrestricted randomi-

zation can be recommended.

Introduction

Plant breeders frequently conduct field trials where the

objective is to select the best entries. After the entries

to be compared have been identified, the breeder will

seek the best design and method of analysis. Both will

depend on the genetic architecture of the population

under selection. Entries often have a nested treatment

structure arising from genetic relationships. Here, we

consider two-stage nested structures, where entries fall

into groups (Lush 1947; Falconer and Mackay 1996;

Bueno and Gilmour 2003). For example, entries may

correspond to F3-derived F4 families. We here con-

sider the case where selection is based on the entire set

of entries in the experiment, as opposed to selection

within groups of entries. The main issues are how to

accommodate the nested treatment structure in the

choice of experimental design, whether to model the

treatments as fixed or random effects in the analysis,

and how these issues relate to each other.

Most plant breeding trials involve a large number of

entries, so some kind of incomplete blocking is usually

worthwhile, e.g., a resolvable incomplete block design

such as an a-design (Williams et al. 2002). The opti-

mality of these a-designs has been established assum-

ing fixed treatment effects. However, it is not clear that

a-designs are best when the analysis will treat the

treatments as correlated random effects. Bueno and
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Gilmour (2003) considered the design problem, when

treatment effects are regarded as random. They com-

pared various genetic correlation structures arising

from a pedigree, including the nested structure con-

sidered here, and concluded that the optimal design is

not independent of the genetic correlation structure

and the heritability.

Bueno and Gilmour (2003) used the mean variance

of a difference between treatments as an optimality

criterion on the grounds that the treatment ranking can

be obtained from these comparisons. The genetic

variances and the heritability were assumed known,

whereas in practice, variance components need to be

estimated, and the resulting estimators for random

effects, known as empirical BLUP (best linear unbi-

ased prediction), do not perform as efficiently as BLUP

with known variance components. It is therefore useful

to study the small-sample behaviour of different

models and estimation methods by simulation. In doing

so, one may directly relate the ranking of effect esti-

mates compared to the ranking of true effects. This is

more readily interpretable for a plant breeding context

than the average variance of a difference, though both

criteria are closely related.

In light of Bueno and Gilmour (2003), it is not

obvious whether a resolvable incomplete block design

such as an a-design is optimal or at least competitive

under all analysis scenarios, including BLUP of treat-

ment effects for a nested pedigree, though it can be

hoped to be close to the optimum. If genetic variance

and covariance parameters are known beforehand, one

can find optimal designs for a specific pedigree and

analysis method (Bueno and Gilmour 2003). This ap-

proach may not be within reach for routine applica-

tions, though, where genetic variance parameters are

usually unknown before the trial, time available for

planning is limited, and breeders prefer to rely on ro-

bust and easy-to-use procedures. Efficient incomplete

block designs are conveniently constructed using soft-

ware such as CycDesigN (Whitaker at al. 2006), and so

it is reasonable to prefer such designs in practice. In the

present paper, we compare the performance of a-de-

signs, the most common type of resolvable incomplete

block design for large numbers of treatments, to some

simple commonly used alternatives.

One common alternative is to plant close relatives

together in blocks, which is common practice. This type

of field layout is akin to a split-plot design with groups

of relatives allocated to main plots although groups

may differ in size. Another alternative investigated

here was suggested by Williams and John (1999) in a

tree breeding context. The genetic context is a little

different with trees grouped in families and families

nested in provenances, and selection is generally fo-

cussed on families within provenances. For this nested

structure, Williams and John (1999) proposed a re-

stricted randomization such that the number of dif-

ferent groups (families) per incomplete block is

maximized. Software packages such as CycDesigN

(Whitaker et al. 2006) conveniently generate such de-

signs, even when group sizes are not equal. This re-

stricted randomization maximizes the power for

detecting between group differences and so is consid-

ered here for the nested pedigree case.

The present paper uses simulation to compare these

two design alternatives to an unrestricted randomiza-

tion for a-designs. Our assumption throughout is that

entries are a random two-stage sample from a hypo-

thetical population of entries, with families sampled in

the first stage and entries within families sampled in the

second stage. This justifies the assumption of random

entry effects. The fact that entries are a random sample

does not necessarily imply, however, that best linear

unbiased prediction (BLUP) is the best method of

analysis. For example, when variance components are

poorly estimated, it may be worthwhile to take entries

as fixed and use best linear unbiased estimation

(BLUE). We therefore compare BLUE and BLUP in

simulations. Different designs and estimation methods

are evaluated using the rank correlation of estimated

and true treatment effects.

No claim is made here that any of the studied de-

signs is optimal under a random treatment model.

While optimal designs could be devised for such sce-

narios (Bueno and Gilmour 2003), routine application

is difficult due to unknown variance components and

the need to consider several traits simultaneously. Our

purpose is therefore to identify general-purpose de-

signs for nested pedigrees that perform well over a

wider range of genetic correlation structures.

Materials and methods

Simulation of treatment effects

Throughout this paper, the treatment effect is defined

as the sum of a group (family) effect and an entry

within group effect. This gives rise to a genetic variance

of treatments of Vt = Vg + Vw, a genetic covariance

between treatments in the same family of Vg, in dif-

ferent families of zero. In simulations, treatment ef-

fects were generated according to the nested structure

group/entry = group + group•entry based on this sim-

ple variance component model, where groups and en-

tries were coded as group and entry, respectively
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(Piepho et al. 2003). The random group effect implies a

genetic correlation qg = Vg/Vt among treatment effects

in the same group.

Simulation of block effects

Block effects were simulated as random with variance

Vb and the residual variance was set to one, inducing

an environmental correlation qe = Vb/(1 + Vb) be-

tween plots in the same block. In a given simulated

data set, block effects and treatment (entry + group)

effects were generated as described previously. The

treatments were then randomized to plots according to

each of the experimental designs, using the same set of

treatment and block effects. Simulations were per-

formed using the SAS System.

Variance parameters

We define the ratio R = Vt/(Vt + Ve) where Vt is the

variance of treatment effects defined above and

Ve = Vb + 1 is the variance of block plus residual error

effects. It should be stressed that R is not identical to a

heritability, because the denominator involves the

block variance. We prefer R to the heritability for the

purpose of this paper due to the symmetry in the def-

inition of Vt and Ve. In simulations, each of the

parameters qe, qg, and R took values 0.2, 0.5, and 0.8.

This covered a relatively wide range of settings. Note

that each of the three design parameters can take on

values between 0 and 1. The choice of values for qg was

deliberate, while for qe and R, these values reflected

estimates for parameters found in analyses of a wide

range of trials by German plant breeders (results not

shown). Each combination of the values for qe, qg, and

R was assessed with 1,000 simulations.

Experimental designs

In simulations, we considered designs with incomplete

blocks of sizes three, five, eight, and ten. The designs

were (1) the a-design with unrestricted randomization,

(2) the a-design with randomization restricted so that

the number of groups per block is maximized, (3) a

split-plot design with groups randomized to main-plots

(equivalent to incomplete blocks). We simulated

groups such that the size was constant, equalling the

block size. In addition to the simulation of equal group

sizes, we also simulated experiments with unequal

group sizes. These had two large groups comprising

half the treatments with the remaining treatments in

groups, which were the same size as the block size. The

simulation of unequal groups did not cover the split-

plot design. The number of treatments was 120 in all

simulated designs. The simulated designs had two,

three or four complete replicates. CycDesigN

(Whitaker et al. 2006) was used to generate a-designs

with and without restricted randomization for groups.

When randomization was unrestricted, the design was

generated using a single treatment factor and group/

entry labels were randomly allocated to the treatment

numbers for each simulation run. For restricted ran-

domization, the design was generated using group and

entry factors and group/entry labels were randomly

allocated to the design group and entry numbers for

each simulation run.

The simulation of unequal groups did not cover the

split-plot design because this would have necessitated

generating block effects with variance depending on

block size, thus making block structures different

among designs. Different variance values would then

have been assumed for the split-plot and a-designs,

thus making the comparison difficult. Alternatively,

plot values could have been generated based on a

spatial model (Gilmour et al. 1997; Qiao et al. 2000),

but this would have involved many choices among

alternative models. It should be stressed that in our

simulations’ field, trends were completely aligned with

the split-plot blocks, which represents a worst-case

scenario for the split-plot design.

Analysis of simulated data

All designs were analysed using the block model rep/

blk, where rep codes complete replicates, while blk

codes incomplete blocks/main plots within replicates.

Taking main plots as random was a necessity for the

split-plot design. Block effects in a-designs were taken

as random for recovery of information. Treatment ef-

fects of entries, corresponding to the sum of group

effect and entry-within-group effect, were modelled as

group + group•entry. The full model reads

groupþ group�entryþ repþ rep�blk.

Treatment effects, given by group + group•entry,
were estimated via both best linear unbiased estima-

tion (BLUE) by taking treatment effects fixed and via

best linear unbiased prediction (BLUP) by taking

treatment effects as random. In order to evaluate dif-

ferent designs and methods of estimation, it was as-

sumed that selection is to be based on combined group/

entry effects. The objective therefore is to identify

estimators which best agree with the ranking of true

treatment effects (the sum of the group and group•
entry effects). Thus, Spearman’s rank correlation was
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computed between true and estimated treatment ef-

fects in each simulation run. Rank correlations were

averaged across 1,000 simulation runs per setting. Our

simulations indicate that the standard error of a dif-

ference in the mean rank correlation for different

estimators was usually in the order of 0.001. Thus, we

reported mean rank correlation up to three decimal

places.

Results

The simulation results are fairly clear-cut, so we only

present a limited number of tables. The full set of ta-

bles is available from the first author upon request.

Results for equal group sizes and two replicates are

shown in Tables 1 and 2, while those for unequal group

sizes are given in Table 3. In addition, we performed

simulations for three and four replicates using group

size 5. Results for three replicates are reported in Ta-

ble 4. The tables show how the rank correlation among

true and estimated values depends on genetic correla-

tion (qg), environmental correlation (qe), and repeat-

ability (R). The results show that the split-plot design is

always outperformed by the a-design and restricted

randomization for the a-design leads to little, if any,

improvement in terms of rank correlation among esti-

mated and true treatment effects. Also, for the a-de-

signs, BLUP of treatment effects is better than BLUE

throughout. The difference between designs diminishes

most notably with increasing repeatability R. The

performance of BLUP and BLUE improves consis-

tently and markedly with increasing environmental

correlation (qe). Interestingly, for the split-plot design,

BLUE outperforms BLUP in most cases.

Discussion

Plant breeders exercise various selection strategies

with pedigreed lines. For example, one may select so-

lely on the performance of individual entries. This is a

poor strategy when heritability is low. Information

from relatives may be exploited, e.g., by selection

Table 1 Rank correlation among estimated and true genetic
values for 12 groups of size 10 (=block size). Block effects were
taken as random for all analyses. Each simulated design had two

replicates. 1,000 simulations were used for each setting. Best
rank correlation for a setting is boldfaced

R qg qe BLUE BLUP

Split-plot a-Design/randomization Split-plot a-Design/randomization

Unrestricted Restricted Unrestricted Restricted

0.2 0.2 0.2 0.554 0.577 0.579 0.457 0.581 0.592
0.5 0.562 0.658 0.655 0.469 0.673 0.672
0.8 0.565 0.805 0.803 0.562 0.815 0.814

0.5 0.2 0.538 0.563 0.564 0.470 0.649 0.655
0.5 0.553 0.649 0.649 0.411 0.723 0.730
0.8 0.567 0.798 0.797 0.461 0.835 0.834

0.8 0.2 0.538 0.555 0.557 0.572 0.768 0.768
0.5 0.548 0.638 0.638 0.438 0.809 0.812
0.8 0.559 0.788 0.788 0.368 0.873 0.876

0.5 0.2 0.2 0.797 0.814 0.811 0.784 0.821 0.820
0.5 0.800 0.863 0.864 0.781 0.868 0.869
0.8 0.807 0.935 0.935 0.813 0.937 0.937

0.5 0.2 0.795 0.807 0.806 0.798 0.838 0.839
0.5 0.795 0.859 0.860 0.771 0.878 0.880
0.8 0.801 0.934 0.933 0.778 0.939 0.938

0.8 0.2 0.801 0.808 0.807 0.778 0.838 0.839
0.5 0.801 0.859 0.859 0.778 0.878 0.879
0.8 0.801 0.933 0.933 0.778 0.938 0.938

0.8 0.2 0.2 0.934 0.939 0.939 0.933 0.940 0.940
0.5 0.935 0.958 0.959 0.934 0.959 0.959
0.8 0.937 0.982 0.982 0.939 0.982 0.982

0.5 0.2 0.931 0.937 0.936 0.932 0.941 0.940
0.5 0.932 0.956 0.956 0.931 0.958 0.958
0.8 0.935 0.981 0.981 0.934 0.981 0.981

0.8 0.2 0.925 0.931 0.931 0.934 0.945 0.946
0.5 0.926 0.952 0.952 0.927 0.959 0.960
0.8 0.928 0.978 0.979 0.926 0.980 0.980
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based on family (group) means, also known as family

selection (Falconer and Mackay 1996). A further

strategy, often used in animal breeding, is within-fam-

ily selection, which selects individuals based on their

deviation from the family mean. A compromise be-

tween family selection and within-family selection is to

combine both individual means and family means via a

selection index. It turns out that the optimal index

suggested by Lush (1947) is equivalent to BLUP of

individual treatment effects (group + group•entry)

based on the nested structure considered in this paper.

Thus, selection using BLUP provides an optimal

strategy in the sense of Lush (1947). By contrast,

selection based on BLUE of individual treatment ef-

fects does not exploit information from relatives and is

therefore equivalent to individual selection.

In some breeding applications, there may be a nes-

ted pedigree, and yet the breeder decides to use the

field trial only for selecting within groups (families,

crosses, etc.), because selection of groups is based on

other considerations, but will be done in parallel with

the field trials. In this case, it will be worthwhile to

have a separate trial for each group, because this

maximizes the accuracy of within-group comparisons.

Clearly, in designing a field trial for evaluation of en-

tries, the guiding principle should be to test in a single

trial all entries that need to be directly compared for

making a selection decision. If selection is across sev-

eral groups, then all groups should be tested in a single

trial. If selection is to be done only within groups, but

not across groups, then it is preferable to perform a

separate trial for each group.

It should be emphasized that our conclusions are

strictly valid only for the family and experiment sizes

we investigated. Simulations conducted for other set-

tings not shown in this paper did yield the same ten-

dency in favour of unrestricted randomization. Also,

our simulations assume absence of competition effects,

which may not be a realistic scenario when plots are

small.

This paper considered different options in designing

experiments with nested treatment structure. The

simplest option is to ignore nesting altogether and use

a standard design such as the a-design. Alternatively,

Table 2 Rank correlation among estimated and true genetic
values for 24 groups of size 5 (=block size). Block effects were
taken as random for all analyses. Each simulated design had two

replicates. 1,000 simulations were used for each setting. Best
rank correlation for a setting is boldfaced

R qg qe BLUE BLUP

Split-plot a-Design/randomization Split-plot a-Design/randomization

Unrestricted Restricted Unrestricted Restricted

0.2 0.2 0.2 0.552 0.565 0.562 0.484 0.556 0.559
0.5 0.555 0.627 0.630 0.485 0.639 0.645
0.8 0.562 0.774 0.774 0.583 0.791 0.791

0.5 0.2 0.549 0.558 0.559 0.509 0.621 0.622
0.5 0.555 0.625 0.624 0.467 0.692 0.690
0.8 0.562 0.770 0.772 0.498 0.814 0.814

0.8 0.2 0.541 0.556 0.559 0.590 0.722 0.725
0.5 0.550 0.619 0.621 0.471 0.774 0.776
0.8 0.558 0.763 0.764 0.438 0.858 0.858

0.5 0.2 0.2 0.800 0.806 0.805 0.794 0.812 0.811
0.5 0.801 0.850 0.849 0.798 0.857 0.856
0.8 0.803 0.924 0.923 0.821 0.927 0.927

0.5 0.2 0.796 0.803 0.804 0.800 0.830 0.830
0.5 0.800 0.846 0.847 0.791 0.867 0.868
0.8 0.802 0.922 0.923 0.799 0.930 0.930

0.8 0.2 0.802 0.806 0.803 0.799 0.832 0.832
0.5 0.802 0.848 0.847 0.799 0.869 0.869
0.8 0.802 0.921 0.922 0.799 0.929 0.930

0.8 0.2 0.2 0.934 0.937 0.937 0.934 0.938 0.938
0.5 0.934 0.953 0.953 0.934 0.954 0.954
0.8 0.934 0.977 0.977 0.938 0.978 0.978

0.5 0.2 0.932 0.935 0.935 0.933 0.939 0.939
0.5 0.933 0.951 0.952 0.932 0.954 0.954
0.8 0.934 0.977 0.977 0.934 0.978 0.978

0.8 0.2 0.929 0.933 0.932 0.937 0.946 0.945
0.5 0.932 0.950 0.950 0.934 0.959 0.959
0.8 0.932 0.976 0.976 0.931 0.979 0.978
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randomization may be restricted such that either the

power with within-group comparisons is maximized

(split-plot design), or the power for between-group

comparisons is maximized, as in the design suggested

by Williams and John (1999). These authors argued

that variation between groups is often perceived to be

greater than that within groups, and that in such cases

it may be desirable to ensure that groups occur as

equally as possible within each block. Our simulations

indicate that neither of these two restrictions on the

randomization provide any advantage in the settings

studied.

In practical plant breeding, one is primarily inter-

ested in obtaining good point estimates of treatment

effects for making good selection decisions. It is not

immediately obvious that maximization of power for

between-group comparisons will maximize the re-

sponse to selection for nested treatment structures such

as hierarchical pedigrees. In fact, intuitively it seems

equally reasonable to expect that maximization of

power for within-group comparisons is advantageous

when differences between groups are relatively large,

because large differences between groups should be

easier to detect than small differences within groups

(Bueno and Gilmour 2003). This reasoning leads to a

split-plot design as an obvious choice, and some

breeders seem to think along these lines when

designing their trials—they prefer to plant close rela-

tives next to each other in the field, as they perceive

this design to facilitate visual assessment of diseases

and other traits. While a split-plot type design may

have some practical merit for the breeder, our simu-

lations have shown that this design performs relatively

poorly compared to a-designs, as far as the ranking of

entries is concerned. This suggests that planting close

relatives near to each other in the field is not usually an

efficient strategy, when selection is to be exercised

across groups. There may be a need to use a split-plot

design, however, when strong competition is expected

among entries from different groups, for example,

when groups differ markedly in plant height. This will

be particularly useful when plot size is too small to

avoid neighbour effects on plants that will be used for

measuring traits of interest.

It must be stressed that group sizes will usually be

heterogeneous, so use of a split-plot design would not

be straightforward mainly at the analysis stage. In

particular, variance within main plots is expected to

increase with the number of subplots. The unequal si-

zes of main plots could be accommodated, e.g., by

modelling the variance within main plots as a log-linear

regression on the number of plots per main plot (Littell

et al. 1996, Sect. 8.4). Analysing a split-plot design by

spatial methods is another option that could be con-

templated, but there is a danger that group effects are

removed by the spatial error component, thus leading

to biased estimates of treatment effects.

Simulations did not reveal substantial gains, if any,

from restricted randomization as suggested by Williams

and John (1999). The danger that group and block ef-

fects are confounded, causing an inflated block variance

estimate, seems low when the number of entries is

large. The REML method bases variance estimation on

error contrasts, thus making variance component esti-

mates independent of fixed effects (Patterson and

Thompson 1971). Therefore, treatment effects will not

cause a bias in the block variance estimate, when

treatment effects are taken as fixed. The situation is less

clear with random treatment effects. With groups of

equal size, the worst case scenario would occur when

blocks are completely confounded with groups, i.e.,

when (as a result of randomization) complete groups

would be allocated to blocks. This allocation is exactly

Table 3 Rank correlation among estimated and true genetic
values for block size 5. Two groups (families) were of size 30,
while the remaining groups were of size 5. Block effects were
taken as random for all analyses. Each simulated design had two
replicates. 1,000 simulations were used for each setting. Best
rank correlation for a setting is boldfaced

R qg qe BLUE BLUP

Randomization Randomization

Unrestricted Restricted Unrestricted Restricted

0.2 0.2 0.2 0.560 0.561 0.576 0.577
0.5 0.626 0.624 0.652 0.651
0.8 0.768 0.767 0.790 0.789

0.5 0.2 0.550 0.551 0.633 0.635
0.5 0.612 0.614 0.691 0.697
0.8 0.761 0.760 0.807 0.809

0.8 0.2 0.531 0.529 0.721 0.727
0.5 0.597 0.598 0.769 0.772
0.8 0.743 0.738 0.842 0.842

0.5 0.2 0.2 0.801 0.802 0.810 0.810
0.5 0.847 0.847 0.856 0.856
0.8 0.921 0.921 0.925 0.925

0.5 0.2 0.793 0.793 0.823 0.824
0.5 0.836 0.835 0.859 0.860
0.8 0.915 0.917 0.924 0.925

0.8 0.2 0.793 0.792 0.823 0.822
0.5 0.838 0.837 0.862 0.861
0.8 0.916 0.916 0.925 0.925

0.8 0.2 0.2 0.935 0.935 0.936 0.936
0.5 0.952 0.952 0.953 0.953
0.8 0.977 0.977 0.977 0.977

0.5 0.2 0.930 0.930 0.935 0.935
0.5 0.948 0.949 0.950 0.952
0.8 0.975 0.975 0.976 0.976

0.8 0.2 0.919 0.918 0.933 0.933
0.5 0.937 0.937 0.947 0.947
0.8 0.970 0.970 0.972 0.973
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that of a split-plot design. Here, the error term for the

comparison of groups would involve the block variance,

while within-group comparisons would be based en-

tirely on within-block comparisons. In this sense, our

split-plot scenario considered in simulations corre-

sponds to the extreme case envisioned by Williams and

John (1999). The relatively poor performance of the

split-plot design confirms the assertion by Williams and

John (1999) that it is preferable to avoid blocks that are

entirely made up of only a single group. The chances of

obtaining a randomization that is equal or close to that

of a split-plot design are usually so small, however, that

the performance of unrestricted versus restricted ran-

domization of an a-design is very similar. Nevertheless,

one may prefer the restricted randomization as an

insurance against a particularly unfavourable random-

ization.

In this paper, we have focussed on a-designs, which

are a special class of resolvable incomplete block de-

signs. The main advantage of a-designs is their speed of

construction for larger treatment numbers and most of

the time they will be optimal or near-optimal when

treatment effects are fixed. For smaller treatment

numbers, in particular, it is possible to improve on the

a-designs, albeit only slightly in most cases. For

example, some of the square and rectangular lattices

(known to be optimal for their parameter specification)

are not a-designs (Patterson and Williams 1976). Cyc-

DesigN gives users the option to construct designs

using the alpha option or the more general (and

slower) unrestricted option. As a general recommen-

dation, one would use the unrestricted option for small

treatment numbers and alpha for bigger designs. In a

plant breeding context, it is often preferable to con-

centrate on a-designs, because the number of treat-

ments is large.

We here have concentrated on designs with one-way

blocking structures and found a-designs to perform

well compared to alternative designs. It is stressed,

however, that for field layouts involving a rectangular

grid of plots, row-column designs can be more efficient

than one-dimensional blocking such as with a-designs

or more generally resolvable incomplete block designs.

The advantages of two-dimensional over one-dimen-

Table 4 Rank correlation among estimated and true genetic
values for group size 5 (=block size) and 24 groups (families).
Block effects were taken as random for all analyses. Each

simulated design had three replicates. 1,000 simulations were
used for each setting. Best rank correlation for a setting is
boldfaced

R qg qe BLUE BLUP

Split-plot a-Design/randomization Split-plot a-sesign/randomization

Unrestricted Restricted Unrestricted Restricted

0.2 0.2 0.2 0.630 0.647 0.648 0.600 0.652 0.653
0.5 0.634 0.713 0.713 0.615 0.722 0.722
0.8 0.639 0.841 0.843 0.678 0.846 0.849

0.5 0.2 0.626 0.642 0.642 0.622 0.695 0.698
0.5 0.634 0.713 0.715 0.587 0.758 0.763
0.8 0.633 0.840 0.837 0.607 0.861 0.860

0.8 0.2 0.625 0.640 0.640 0.699 0.781 0.781
0.5 0.623 0.708 0.707 0.599 0.824 0.823
0.8 0.635 0.835 0.836 0.581 0.891 0.892

0.5 0.2 0.2 0.851 0.860 0.860 0.849 0.863 0.863
0.5 0.852 0.896 0.896 0.854 0.898 0.899
0.8 0.854 0.950 0.951 0.871 0.951 0.951

0.5 0.2 0.850 0.858 0.859 0.854 0.873 0.875
0.5 0.851 0.894 0.895 0.848 0.904 0.905
0.8 0.852 0.949 0.950 0.855 0.952 0.952

0.8 0.2 0.852 0.858 0.857 0.855 0.872 0.873
0.5 0.852 0.894 0.894 0.855 0.904 0.904
0.8 0.852 0.950 0.949 0.855 0.952 0.952

0.8 0.2 0.2 0.954 0.957 0.956 0.954 0.957 0.957
0.5 0.954 0.969 0.969 0.955 0.969 0.969
0.8 0.955 0.986 0.986 0.957 0.986 0.986

0.5 0.2 0.953 0.956 0.956 0.953 0.958 0.958
0.5 0.954 0.969 0.968 0.953 0.970 0.969
0.8 0.954 0.986 0.986 0.954 0.986 0.986

0.8 0.2 0.951 0.954 0.953 0.955 0.961 0.960
0.5 0.952 0.966 0.967 0.953 0.970 0.970
0.8 0.952 0.985 0.985 0.951 0.986 0.985
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sional blocking can be considerable, especially when

plots are not long and thin.

This paper has considered BLUP and BLUE as

alternative methods of estimation when entries can be

regarded as a random sample. Use of BLUE implies

falling back to a fixed effects assumption. It should be

stressed that the random assumption is the stronger

one. Switching to fixed effects when the assumption of

a random sample is tenable, can, in fact, be regarded as

a relaxation of statistical assumptions. From a Bayesian

perspective, use of BLUE implies use of a noninfor-

mative prior for genetic effects. Clearly, both BLUE

and BLUP are valid methods of analysis, when entries

can be regarded as random. In particular, randomness

of treatment effects does not invalidate BLUE. To

further support this point, consider the example of

incomplete blocks. Proper randomization justifies the

random assumption for blocks, and yet, one may prefer

to take blocks as fixed during analysis, when inter-

block information is low or when weights for optimal

combination of intra-block and inter-block information

cannot be accurately estimated. In fact, the intra-block

analysis is a limiting case of the mixed-model analysis

(i.e., with recovery of inter-block information) when

the block variance component is large. Hence, alge-

braically, the BLUP of blocks tends towards the BLUE

as the block variance increases.

Our results show that BLUP of treatment effects

almost invariably outperforms BLUE, often markedly

so. The most critical issue is the estimation of genetic

variance components. If all treatment variance com-

ponents can be estimated on ‘‘enough’’ degrees of

freedom, BLUP is the method of choice for estimating

treatment effects. This finding is in agreement with a

large number of empirical studies in animal and plant

breeding (Panter and Allan 1995; Piepho and Möhring

2006). When genetic variances cannot be reliably esti-

mated for a given trial, it may be worthwhile to use

variance component data from similar past trials. The

advantage of BLUP does not seem to have gained

much attention, however, for the particular type of

breeding scenario considered in this paper (but see

Cervantes-Martinez et al. 2001 for an application), al-

though a nested random model is often used for esti-

mation of genetic parameters in plant breeding trials

(Yang 2002; Soh et al. 2003; Persson and Andersson

2004; Wu et al. 2006).

In the present paper, we have evaluated designs,

which have been optimized under a fixed treatment

effects model. At the same time, simulations revealed

that BLUP of treatment effects is preferable to BLUE.

This raises the question whether the design can be

further improved under a random treatment effects

model. The results of Bueno and Gilmour (2003) sug-

gest that there is likely to be some scope for

improvement. Those authors concluded that two de-

signs which are both optimal for unrelated treatments

are not necessarily equally good for some treatment

relatedness. For the special case of a nested treatment

structure (half-sibs or full-sibs) and low-to-medium

heritability, the optimal design is in the class of optimal

designs for unrelated treatments. Thus, it is quite

possible that an optimal design for BLUP with a nested

treatment structure can be found among the class of

resolvable incomplete block designs.

Pedigrees giving rise to a two-stage nested treatment

design are but one possible scenario in plant breeding,

albeit a rather common one. Alternative designs in-

clude various crossed designs, including diallels and

factorial crosses. Typically, many different crosses are

made, and the resulting pedigree may be quite complex

overall. In principle, one could attempt to find optimal

designs for each specific setting, though the effort

would be quite considerable. Also, genetic variance

components are typically not accurately known, and

they differ among traits, so finding a universally opti-

mal design that capitalizes on genetic correlation

structure is difficult. It seems desirable to have general-

purpose designs that can be expected to yield good

results over a range of different settings. Our simula-

tions suggest that the a-design is fairly robust to dif-

ferent pedigree structures and analysis methods

(BLUP vs. BLUE), when the pedigree has a simple

two-stage structure. Also, unequal group sizes can be

accommodated with no difficulty because grouping is

ignored at the design stage. Thus, we recommend this

design for nested treatment structures in plant breed-

ing. Additional simulations with other pedigree struc-

tures, including crossed designs, would be useful.
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